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Synthesis of Clustered Disaccharide Polyphosphate Analogues of Adenophostin A
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Abstract. Three new potential ligands for the IP; receptor (i.e. compounds 5-7) were prepared by
Sonogashira coupling of propargyl 2-O-acetyl-5-O-benzyl-3-0-(3,4-di-O-acetyl-2,6-di-O-benzyl-o.-D-
glucopyranosyl)-B-D-ribofuranoside (15) with iodobenzene, 1,2-diiodobenzene and 1,2,4,5-
tetraiodobenzene, followed by deacetylation, phosphorylation and deprotection.
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The adenophostins A and B (1 and 2, Fig. 1), isolated from the fermentation broth of Penicillium
brevicompactum, are full agonists' of the mammalian D-myo-inositol 1,4,5-trisphosphate receptor (IPsR).
Interestingly, the binding affinity of both ligands for the IP;R and the Ca**-mobilizing activity are 10-100
times higher in comparison with the natural ligand D-myo-inositol 1,4,5-trisphosphate (IPs, 3, Fig. 1).>°

Earlier studies® indicated that the IPsR, a glycoprotein spanning the membrane of the endoplasmic
reticulum, harbors four independent ligand binding sites in a fourfold symmetrical spatial arrangement. It has
been proposed5 that the IP;R forms a Ca®*-channel upon the sequential binding of IP; to the four subunits (i.e.
cooperative opening). On the other hand, the possibility that the binding of a single IP; molecule suffices to
release Ca™ into the cytosol (i.e. non-cooperative opening) is not excluded.®
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It occurred to us that a ligand, in which four IP; units are anchored via a spacer to the 1,2,4,5 positions
of a central phenyl core moiety, would be a useful tool in solving the existing ambiguity concerning the
precise mechanism of IP;-mediated Ca”*-channel opening. However, it may be expected’ that the nature and
orientation of the individual hydroxyl functions in myo-inositol will pose a formidable barrier in constructing a
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D-myo-inositol derivative suitable for coupling to the core unit. Recently, Jenkins et al.® disclosed that the
adenophostin A analogue 4 displayed Ca2+-mobilizing potency similar to IPs;. The latter finding implies that a
molecule in which the anomeric methyl group of compound 4 is replaced by an appropriate spacer would be
an acceptable substitute for the corresponding IPs;-spacer containing derivative. On the basis of these
considerations, we here present a route of synthesis to the mono-, di- and tetravalent adenophostin A
analogues 5§, 6, and 7.

Target compounds 5-7 are composed of a central phenyl core, which is anchored via propyl spacers to
one, two or four phosphorylated glucosyl a-1,3 ribose disaccharides. Retrosynthetic analysis reveals that the
assembly of these mono-, di- and tetravalent molecules can be achieved by Sonogashira coupling® of
iodobenzene, 1,4-diiodobenzene or 1,2,4,5-tetraiodobenzene with the commeon building block propargyl 2-O-
acetyl-5-O-benzyl-3-0-(3,4-di-O-acetyl-2,6-di-O-benzyl-a-D-glucopyranosyl)-B-D-ribofuranoside (15). The o-
glucosidic linkage in key disaccharide 15 can in principle be introduced by condensing, as reported'* for the
synthesis of adenophostin A, the ribose unit 11 (see Scheme 1) with ethyl 3,4,6-tri-O-acetyl-2-O-benzyl-1-
thio-B-D-glucopyranoside. In addition, it was established that the latter glucosyl donor could be replaced by
the more easily accessible thioglucoside 10 (see Scheme 1).
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Reagents and conditions: (i) butane-2,3-dione (1.1 eq), CH(OCHa)s, cat. CSA, CHaOH, reflux, 1h, 78% (2 regioisomers); (ii) BnBr,
NaH, DMF, 98%; (iii) NiS/cat. TfOH, Et;0, 30 min., 83% (c:p = 1:0); (iv) a. TBAF (1M in THF)/1,4-dioxane, 1/4, v/v, 50°C, 8h; b.
BnBr, NaH, DMF, 92%; (v} a. HOAc/Hz0/(HOCHz)z2, 14/6/3, viviv, reflux, 1h; b. AczO, pyr, 16h, 81%. (vi) CaHaOH (2 eq), TMSOTf,
(CH2Cl)2, 30 min., 81%.

The requisite ethyl thioglucoside 10 was easily available by the following two-step procedure (see
Scheme 1). Protection of known'® ethyl 1-thio-B-D-glucopyranoside (8) with 2,2,3,3-tetramethoxybutane, "'
prepared in situ by reaction of trimethyl orthoformate with butane-2,3-dione'? in the presence of a catalytic
amount of camphorsulfonic acid (CSA) gave, after purification'® by silica gel column chromatography, 3,4-
butane diacetal (BDA) 9. Benzylation of 9 with benzyl bromide (BnBr) and sodium hydride (NaH) proceeded
smoothly to give the fully protected glucosyl donor 10. Glycosylation of known'* ribose acceptor 11 with 10
in the presence of the promotor N-iodosuccinimide (NIS) and a catalytic amount of trifluoromethanesulfonic
acid (TfOH) proceeded in a stereoselective fashion to give the o-linked disaccharide 12 in 83% yield.
Removal of the 5’-0O-¢-butyldiphenylsilyl group in 12 with tetra-n-butylammonium fluoride (TBAF), followed
by benzylation of the resulting primary hydroxyl function, yielded compound 13. Removal of both the 3,4-
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butane diacetal and isopropylidene groups in 13 under mild acid catalysed transacetalisation conditions'*
proceeded smoothly without any concomitant cleavage of the interglycosidic bond. Acetylation of the free
hydroxyl functions afforded the fully protected dimer 14 as a mixture of anomers. Glycosidation of 14 with

propargyl alcohol under the agency of a catalytic amount of trimethylsilyl triflate (TMSOTf) gave building
block 15 in 50% yield based on 11.
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Reagents and conditions: (i) 5 mol% PdCIx(PPha)z, 10 mol% Cul, EtaN/DMF, 1/20, viv, 16h, 80% (i) NaOCHs, CHsOH, 1h, 100%;
(iii) a. 21, 1H-tetrazole, (CHzCI)2/CHsCN, 3/1, v/v, 30 min,; b. +BuOOH, 0°C, 1h, 80%; (iv) Pd/C, Hz (1 atm.), NaOAc, 1,4-
dioxane/iso-propanol/Hz20, 4/2/1, viviv, 16h.

At this stage, attention was focused on the assembly of the target compounds 5-7. Sonogashira
coupling9 (see Scheme 2) of terminal acetylene 15 (1.25 mmol) with iodobenzene 16 (1.00 mmol) in DMF (5
mL) under the influence of PdCI,(PPhs;)/Cul/EtsN gave the phenyl acetylene derivative 17 and the cross
coupling product 20 in a 2:1 ratio. Formation of the latter compound was prevented by adding a solution of 15
in DMF (2 mL) over a period of 1h to the iodobenzene/catalyst solution (3 mL). Zemplén deacetylation of 17
gave 18 which was phosphitylated with dibenzyl N,N-diisopropyl phosphoramidit:els (21) followed by in situ
oxidation of the resulting phosphite triesters with ferr-butyl hydroperoxide to afford fully benzylated
trisphosphate 19 (80% over the three steps). Debenzylation and contemporary reduction of the acetylene
moiety was effected by hydrogenolysis (1 atm. Hy) over Pd-C in a buffered (NaOAc) solution to give, after
purification by HW-40 gel filtration, the monovalent derivative 5 (Na*-salt). In a similar way, di- and
tetravalent derivatives 6 and 7 were readily available starting from 1,4-diiodobenzene and 1,2,4,5-
tetraiodobenzene,'® respectively. The identity and homogeneity of target compounds 5-7 were fully
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Figure 2. Part of the 600 MHz 'H (A) and *'P-"H COSY (B) NMR spectra of the tetravalent adenophostin A analogue 7.

ascertained by 'H-, °C- and SIP_NMR spectroscopy as well as ESI mass spectrometry. For example, the
symmetrical substitution pattern of the central phenyl core with four disaccharide units in 7, as well as the
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position of the individual phosphate functions, was firmly established by 'H- and *'P-'H COSY NMR
spectroscopy (see Figure 2).

In conclusion, a straightforward and successful approach to clustered adenophostin A analogues has
been presented. It is also of interest to note that coupling of the intermediate building block 14 with different
terminal alkyn-1-ols allows adaptation of the spacer length. The latter possibility is in all likelyhood required
for optimal binding of the clustered disaccharide to the IPsR. The Ca>*-releasing potential and mode of
channel opening (i.e. cooperative or non-cooperative) by analogues 5-7 is currently under investigation.
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